19 research outputs found

    A Determinacy Testing Algorithm for Nondeterminate Flat Concurrent Logic Programming Languages

    Get PDF
    39 pagesThis paper describes an algorithm for the code generation of determinacy testing for nondeterminate flat concurrent logic programming languages. Languages such as Andorra and Pandora require that procedure invocations suspend if there is more than one candidate clause potentially satisfying the goal. The algorithm described has been developed specifically for a variant of flat Pandora based on FGHC, although the concepts are general. We have extended Kliger and Shapiro's decision-graph construction algorithm to compile "don't know" procedures which must suspend for nondeterminate goal invocation. The determinacy test is compiled into a decision graph quite different from those of committed-choice procedures, but we argue that in most cases, the same low space complexity is retained

    Functional ecological genomics to demonstrate general and specific responses to abiotic stress.

    No full text
    1. Stress is a major component of natural selection in soil ecosystems. The most prominent abiotic stress factors in the field are temperature extremes (heat, cold), dehydration (drought), high salinity and specific toxic compounds such as heavy metals. Organisms are able to deal with these stresses to a certain extent, which determines the limits of their ecological amplitudes. Functional genomic tools are now becoming available to study stress in ecologically relevant soil organisms. 2. Here we give an overview of transcriptomic studies aiming to elucidate how plants and soil invertebrates respond and adapt to a stressful environment. The picture emerging from signalling pathways and transcription factors identified in transcription profiling studies suggests that there is a large overlap of genomic responses to drought, salinity and cold; however, heat and heavy metals trigger different stress response pathways. 3. The heat shock response and the oxidative stress response seem to represent universal components of the environmental stress response (ESR). Furthermore, the commonality across plants and animals seems to be higher in effector genes than in transcriptional regulators. 4. Finally, adaptation to stress factors in soil seems to evolve through enhanced constitutive transcription of otherwise stress responsive genes both in plants and animal
    corecore